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The Shea tree (Vitellaria paradoxa) is a major tree species in African agroforestry systems. Butter

extracted from its nuts offers an opportunity for sustainable development in Sudanian countries and

an attractive potential for the food and cosmetics industries. The purpose of this study was to

develop near-infrared spectroscopy (NIRS) calibrations to characterize Shea nut fat profiles.

Powders prepared from nuts collected from 624 trees in five African countries (Senegal, Mali,

Burkina Faso, Ghana and Uganda) were analyzed for moisture content, fat content using solvent

extraction, and fatty acid profiles using gas chromatography. Results confirmed the differences

between East and West African Shea nut fat composition: eastern nuts had significantly higher fat

and oleic acid contents. Near infrared reflectance spectra were recorded for each sample. Ten

percent of the samples were randomly selected for validation and the remaining samples used for

calibration. For each constituent, calibration equations were developed using modified partial least

squares (MPLS) regression. The equation performances were evaluated using the ratio perfor-

mance to deviation (RPDp) and Rp
2 parameters, obtained by comparison of the validation set NIR

predictions and corresponding laboratory values. Moisture (RPDp = 4.45; Rp
2 = 0.95) and fat (RPDp =

5.6; Rp
2 = 0.97) calibrations enabled accurate determination of these traits. NIR models for stearic

(RPDp = 6.26; Rp
2 = 0.98) and oleic (RPDp = 7.91; Rp

2 = 0.99) acids were highly efficient and enabled

sharp characterization of these two major Shea butter fatty acids. This study demonstrated the ability of

near-infrared spectroscopy for high-throughput phenotyping of Shea nuts.
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INTRODUCTION

The Shea tree (Vitellaria paradoxa C. F. Gaertn, Sapotaceae
family), called karité in French, is a major tree species of African
agroforestry systems. The native range of this long-lived (over 200
years) savannah tree species is a large belt 6000 km long fromEast
(Senegal) to West (Uganda) and 600 km wide from north of the
equator to south of the Sahara.Vitellaria paradoxa is divided into
2 subspecies: subsp. paradoxa is distributed throughout most of
the range (including West and Central Africa) while subsp.
nilotica is found in the eastern part of Sub-SaharanAfrica.Within

that wide distribution, there is an immense ecological diversity,
with altitudes ranging from almost 0 to nearly 1500 m, a mean
annual temperature of between 22 and 30 �C and a mean annual
rainfall of 400 mm to 1400 mm. Shea trees reach a maximum
height of 20mwith a trunk diameter ranging generally from0.3 to
1 m at breast height. Annual flowering and fruiting occurs from
December to May with local variations (1).

The Shea tree has been exploited by African communities for
about 3000 years and offers an opportunity for sustainable
development in Sudanian countries (2, 3). Indeed, Shea butter
extracted from fruit kernels provides an attractive potential for
both the food and cosmetics industries (1). The estimated yield of
dry kernel is about 600,000 tons per year, and exports have
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increased over the past decade, reaching 350,000 tons today,
mainly to theUSAandEurope. Traditional uses formedicine and
foods account for 50%, refining for specialty fats 45%, and
cosmetics (refined or not) 5% of production (Lovett personal
communication).

In order to improve the sustainable management of this
species, to launch prebreeding programs and precisely assess
the potential of different geographical origins for marketing, it
is now becoming crucial to improve our knowledge of the
diversity of the chemical content of nuts.

Initial evaluations of Shea nut chemical composition through-
out the natural range of Vitellaria paradoxa have shown great
diversity particularly for fat content and fatty acid composi-
tion (4,5). Those studies revealed fat content values ranging from
22.3% to 52.8%. Relative fatty acid compositions were found to
vary, particularly for oleic acid (C18:1), ranging from 37.1% to
62.1%, and stearic acid (C18:0), from 25.6% to 50.2%. It was
suggested that the variation observed in these initial investiga-
tions was due to the two subspecies, but also to bioclimatic
variations related to temperature and annual rainfall.

However, these first evaluations of Shea nut chemical diversity
were based onanunbalancedand restricted collectionofmaterial.
Consequently, the results may not reflect a statistically accurate
assessment of actual Vitellaria paradoxa variability within its
natural range. Indeed, some geographical origins studied were
represented by 29 samples, while others by only one.

Fresh assessment of chemical content variability, based on
significant and representative sampling, is therefore needed.
Classical chemical tools such as solvent extraction and gas chro-
matography (GC) (6, 7) have shown their efficiency in determin-
ing the chemical composition of plant material, but they are time-
consuming and expensive. In this context, there is now a definite
need to develop a rapid and accurate method.

Near-infrared spectroscopy (NIRS) is a very efficient method
for high-throughput screening of plant materials for their chemi-
cal characteristics. This indirect method is based on vibrational
properties of organic molecule chemical bonds and their interac-
tions with infrared radiation. The NIR absorption spectrum is
therefore correlated with a sample’s chemical composition (8).
The NIRS method can therefore be used to predict the value of
a chemical trait in a sample, but requires the development of an
accurate and robust calibration equation. To that end, this
method requires prior characterization of a large number of
samples uniformly covering the range of variability of the studied
trait (9). Compared to conventional time-consuming biochemical
methods, NIRS has already proven its usefulness for estimating
various parameters in diverse natural and agricultural pro-
ducts (10). Indeed, several studies have demonstratedNIRS effici-
ency in characterizing fat content and fat profiles in fruit from
various species such as peanut, hazelnut and sesame (11-14).

In this paper, we demonstrate the efficiency of near-infrared
spectroscopy in characterizing fat profiles for nuts from Shea
trees of different geographical origin and we propose calibration
equations. This technique provides producing countries with an
opportunity for the high-throughput characterization of large
numbers of Shea nut samples. Moreover, use of the NIRS
technique will be helpful in phenotype/genotype association
studies and breeding programs.

MATERIALS AND METHODS

Materials. The sampling strategy was designed to ensure maximum
coverage of the range of variation in fat composition. As suggested by
previous studies (4,5), variationwas assumed to be linked to the difference
between subspp. paradoxa and nilotica, and to environmental gradients.
Consequently, within each subspecies area, samples were collected according

to north-south clines in order to increase environmental variations (rainfall
and temperature decreases from North to South).

Samples were collected under uniform conditions over two years (2007
and 2008) in four West African countries, Senegal, Mali, Burkina Faso
and Ghana for subsp. Paradoxa, and one East African country, Uganda,
for subsp. nilotica.Within each country, different sites were sampled based
on a rainfall and temperature gradient. A total of 624 trees (GPS located)
were sampled at 17 sites: Senegal (Kenioto, Samecouta and Saraya), Mali
(Nafégué, Mperesso, Daelan, Tori and Sassambourou), Burkina Faso
(Titao and Guibare), Ghana (Kawampe, Tolon and Kulbia) and Uganda
(Katakwi, Pader, Moyo and Uleppi-Arua). A sampling description is
given in Table 1, and the distribution of sites is illustrated in Figure 1. On
average, 30 mature fruits (ready to fall to the ground) were collected per
tree and pooled. Postharvest treatment, including depulping and drying
(3 days at 60 �C), was carried out on site. The dried nuts were sent to the
CIRAD laboratory in Montpellier (France). On receipt, nuts were oven-
dried for two days at 60 �C in order to stabilize moisture content, and then
they were stored at room temperature prior to analysis.

Sample Preparation. Unshelled Shea nuts were first ground in a
“Vorwerk Thermomix Robot”. Raw powders were frozen at -20 �C and
reground in a “SEBValentin blender” inorder toobtain a final particle size
between 0.5 and 0.8 mm. The final powder samples were stored at -20 �C.

Laboratory Analyses. For each sample, moisture content (MC) was
assessed by gravimetric analysis after drying at 103 �C in an oven (Chopin)
for 16 h. Fat content (FC) was solvent-extracted (petroleum ether) from
powders using a semiautomatic Soxtec 2050 extractor (FOSS Analytical,
A/S Slangerupgade 69, DK-3400 Hillerød, Denmark) according to the
manufacturers’ instructions. In a preliminary study (data not shown), we
compared our extraction procedure with conventional fat extraction
method (Soxhlet with hexane as the solvent over 16 h) and observed no
significant differences. After gravimetric quantification, extracted oils
were stored at -20 �C for further chemical analyses. Fatty acid (FA)
profiles were obtained according to the protocol described by Tchobo (6):
after esterification of the oil using sodium methylate, FA profiles were
determined by gas chromatography using a Thermo Focus (Thermo
Fisher Scientific, 81 Wyman Street, Waltham, MA 02454) GC with a

Table 1. Description of the 17 Harvested Sites

Na

site index site GPS altitude (m) 2007 2008

Senegal

1 Kenioto 12.57N; 12.16W 161 12

2 Samecouta 12.60N; 12.13W 126 18

3 Saraya 12.83N; 11.75W 180 10

Mali

4 Nafégué 10.51N; 5.98W 344 35 40

5 Mperesso 12.28N; 5.33W 340 34 37

6 Daelan 13.25N; 4.99W 282 34 37

7 Tori 13.61N; 3.72W 377 35

8 Sassambourou 14.31N; 3.51W 392 35

Burkina

9 Titao 13.72N; 2.16W 336 18

10 Guibare 13.07N; 1.61W 303 21

Ghana

11 Kawampe 8.43N; 1.56W 125 35

12 Tolon 9.43N; 1.00W 154 35

13 Kulbia 10.83N; 0.96W 206 34

Uganda

14 Katakwi 1.82N; 33.99E 1100 34 29

15 Pader 2.80N; 33.31E 1031 31 25

16 Moyo 3.62N; 31.64E 863 16

17 Uleppi-Arua 3.02N; 30.90E 1200 19

a N: number of sampled trees. Total: 624.
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CP SIL 88 (highly substituted cyanopropyl phase) column (Varian, Inc.,
3120 Hansen Way, Palo Alto, CA 94304-1030). The chromatographic
conditionswere as follows: the injector temperaturewas 250 �Cand that of
the FID detector 270 �C. The oven temperature settings were as follows:
150 �C to 225 at 5 �C/min, and then held at 225 �C for 2 min. Vector (He)
gas flow was 1 mL/min with a splitting ratio of 1:80. The injection volume
was 1 μL. For all laboratory measurements the standard error of the
laboratory (SEL) was estimated as the standard deviation from 10 repli-
cates of a standard Shea sample.

For each parameter, comparisons between sites and subspecies were
carried out using one-way analyses of variance (ANOVA) with Student-
Newman-Keuls SNK multiple pair comparison tests at the 5% level
(XLstat software, Addinsoft, 40 rue Damrémont, 75018 Paris, France).
Outlier samples were detected using the Grubbs test (15) procedure at
the 5% level (Statgraphics Centurion XV, Statpoint Technologies, Inc.,
560 Broadview Avenue, Suite 201, Warranton, VA 20186).

NIR Spectrum Acquisition. A NIRS 6500 monochromator (Foss
NlRSystems, Silver Spring, MD) was used to scan reflectance from 400 to
2500 at 2 nm intervals, using ring cups (50mm in diameter) with about 3 g
of fine Shea nut powder. Data were saved as the average of 32 scans and
stored as log(1/R), where R was the reflectance at each wavelength and
1 the reflectance of a standard ceramic reference. Spectra were acquired
randomly, each sample being measured twice, and the average spectrum
was stored. Statistical analyses were performed using Win-ISI II software
(Infrasoft International, Port Matilda, PA), JUMP 7.01 (SAS Institute
Inc., Cary, NC), Statgraphics Centurion XV (StatPoint Inc., Warrenton,
VA) and XLstat software (Addinsoft, Paris, France).

Spectrum Pretreatment. Spectra were mathematically corrected for
light scattering by using the standard normal variate and detrend correc-
tion (16,17). The second derivative was calculated on five data points and
smoothed using Savitzky and Golay polynomial smoothing on five data
points (18).

Principal Component Analysis. Prior to calibration development, a
principal component analysis (PCA) was used to extract relevant informa-
tion from the spectral matrix (n=624). The generalized Mahalanobis
distance (H ) was calculated on the extracted PCs for each sample. This
statistical distance is useful for defining boundaries of the populationand a
similarity index between spectra (19).

This enabled us to discard 22 outlier samples with a Mahalanobis
distanceH>3. These samples had been tagged as moldy on arrival at the
laboratory.

NIRCalibrationDevelopment. In order to assess the performance of
the predictive equations, the remaining 602 PCA samples were split into a
calibration subset (cal) and a validation subset (val). The validation setwas
created by randomly selecting 10% of the 602 samples including 2 samples
from Burkina, 8 from Ghana, 27 fromMali, 1 from Senegal and 22 from
Uganda. The calibration set comprised the remaining 542 samples.

Calibration equations for the parameters were constructed with the
calibration subset (542 samples) using the modified partial least-squares
regression (mPLS) (20) algorithm of WinISI software (9).

Calibration statistics included the following parameters: standard
deviation (SD), coefficient of determination (R2), standard error of
calibration (SEC), and standard error of cross-validation (SECV).
Cross-validation was used during calibration development in order to
select the optimum number of latent variables and to minimize overfitting
of the equations (21, 22). For SECV estimation, 25% of the samples
(randomly selected) were predicted using a calibration model developed
with the other 75%. SECV estimation was repeated four times and the
average calculated. In addition toR2, the ratio of performance to deviation
(RPD = SD/SECV) was used to evaluate the general quality of the fit
obtained for each equation. Unlike SEC and SECV, RPD is independent
of parameter units and can therefore be compared between para-
meters (23). The Student (t) test was used to identify t-outlier samples
during calibration development. Outlier detection was based on the
standardized residuals (= error/SECV) with a cutoff of 2.5. Two passes
of outlier elimination were used (22).

The standard error of prediction (SEP), corresponding to the standard
deviation of residuals, was estimated by predicting the validation subset
using a model developed on the calibration subset. The ratio performance
to deviation of prediction (RPDp) was also calculated as RPDp = SDval/
SEP (where SDval was the standard deviation of validation samples). The
quality of the fits between wet chemistry values (moisture, fat and FA
relative percentages) and NIRS-predicted values was evaluated from the
linear regression slope, the R2 and the bias.

RESULTS AND DISCUSSION

Chemical Analysis. The 602 samples were analyzed in the
laboratory for their moisture and fat content, and 599 extracted
butter fatty acid profiles were determined by GC (Table 2).

Moisture content ranged from 2.25% to 8.37%, with an
average value of 4.48%. Data dispersion was rather small (SD =
0.89%). Low moisture content values avoided lipase activity and
free fatty acid formation (24). Five samples presented extreme
values (Grubbs test; level 5%) with a moisture content ranging
between 7.49% and 8.37%. No particular defect was noticed on
receipt of these samples. Their correspondingNIR spectrawere not
atypical (H values lower than 3), and the calibrationprocess did not
highlight these samples as outliers. This relatively high moisture
content had no incidence on calibration development and was
probably the consequence of incomplete drying.

In order to avoid bias in spectral pattern interpretation, an
analysis of variance (ANOVA) was performed to ensure that
sample origins had no effect on moisture content values. The
ANOVA concluded that there was no significant difference (level
R=5%) between countries for average moisture content values.

Fat content was equal to 49.66%on average (dry matter basis)
with a SD of 5.03% corresponding to relatively low dispersion

Figure 1. Location of the 17 harvested sites.
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(CV= 10.1%). The values ranged from 29.96% to 59.66%. Five
samples were found to be outliers (Grubbs test; 5% level) with a
fat content under 34.33%. These samples were suspected of
containing immature fruits, and this hypothesis was consistent
with the difficulty of distinguishing between mature and imma-
ture Shea fruits during harvesting. The average fat content for
East African Shea nuts (52.92%) was significantly higher
(ANOVA-SNK, at 5% level) than that of West African Shea
nuts (48.03%). Senegalese fruits had the lowest fat content
(45.18%). Fruits from Burkina Faso (48.54%) were similar to
those from Mali (48.53%) and Ghana (49.88%). No significant
differences were reported between sites in each country.

This result suggests that variations linked to environmental
gradients did not lead to specific fat accumulation. Observed fat
contents and differences between East and West African fruits
were in accordance with the results reported by Maranz (4).

Based on an examination of gas chromatography profiles
(Figure 2), seven FA (Table 2) with relative percentages over
0.05% were adopted for the study, corresponding to three
saturated FA (palmitic C16:0, stearic C18:0 and arachidic
C20:0), two cis-monoenoic FA (oleic C18:1 n-9 and cis-vaccenic
C18:1 n-7) and two polyenoic FA (linoleic C18:2 n-6 and
γ-linolenic C18:3 n-6).

Fatty acid composition mainly consisted of stearic (overall
average value: 38.13%) and oleic (overall average value: 48.58%)
acids. These results, obtained on a large set of samples represen-
tative of the natural range of Shea trees, confirmed previously
published results (5, 25).

The gas chromatography profiles from two samples are given
in Figure 2, one from Mali (West Africa) and one from Uganda
(East Africa). These chromatograms confirm the predominance
of stearic and oleic acids in FA profiles. In addition, this figure
shows a marked dominance of oleic acid in Ugandan butter
compared to Malian butter. Indeed, histograms (Figure 3) con-
firmed that East African Shea butters were richer in oleic acid
(56.64%) than West African butters (45.91%). Conversely, the
relative stearic acid percentage was higher in West Africa
(40.91%) than in East Africa (29.72%). Based on the relative
proportions of oleic and stearic acid, two groups corresponding
to East and West Africa were defined (Figure 3).

Within the West African region, average values for oleic acid
decreased from Mali (46.54%) to Ghana (44.33%) while stearic
acid increased from Mali (40.43%) to Ghana (42.11%).

Palmitic acid was present at an average of 4.29%. The highest
values were observed for Senegalese butters (5.61%) and lowest
forMalian butters (3.94%). cis-Vaccenic and linolenic acids were

Table 2. Descriptive Statistics for Laboratory Resultsa

MC fatb palmiticc (C16:0) stearicc (C18:0) oleicc (C18:1 n-9) vaccenicc (C18:1 n-7) linoleicc (C18:2 n-6) linolenicc (C18:3 n-6) arachidicc (C20:0)

N 602 602 599 599 599 565d 599 509d 599

min 2.25 26.96 2.71 23.98 38.76 0.08 3.22 0.06 0.46

max 8.37 59.66 8.44 49.30 62.34 0.90 13.00 0.69 1.83

av 4.48 49.66 4.29 38.13 48.58 0.41 7.13 0.31 1.20

SD 0.89 5.03 0.72 5.89 5.46 0.16 1.04 0.13 0.20

aMC: moisture content. N: number of samples. SD: standard deviation. b Fat expressed as a % of dry matter. cRelative fatty acid composition (FA %). dGC-detected values.

Figure 2. Fatty acid GC chromatograms of two samples from Mali and Uganda.

Figure 3. Histograms of relative stearic and oleic acid percentages.
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low (0.41% and 0.31%) and detected in 565 and 509 samples
respectively. Linoleic acid was detected in all butters, ranging
from 3.22% to 13.0%, with an average of 7.13%. The relative
content of linoleic acid was fairly similar for the five countries,
with a minimum value (6.59%) for Senegalese butters and a
maximum (7.25%) for Malian butters. Arachidic acid ranged
from 0.46% to 1.83%, with an average of 1.20%. Arachidic acid
was found to be low in EastAfrica (0.98% inUganda) and higher
in West African countries (1.16% in Senegal, 1.17% in Ghana,
1.26% in Burkina and 1.33% in Mali).

The average ratio of saturated fatty acids (SFA) to unsaturated
(USFA) was 0.79. Ugandan Shea butter showed the lowest ratio
(0.55) while for West African butters the ratio ranged from 0.85
(Mali) to 0.92 (Burkina).

cis-Vaccenic, linoleic and arachidic acids followed normal
distributions (figures not shown). Stearic and oleic acid distribu-
tions were bimodal due to West and East African samples
(Figure 3). Linolenic acid distribution was also bimodal with
Malian butters apart from the others.

According to the ANOVA-SNK test (level 5%), significant
differences were found for stearic and oleic acid content between
Uganda (subsp. nilotica) and West Africa (subsp. paradoxa).
Within West Africa, for those FAs, Mali and Ghana were found
to be significantly different. Palmitic acid content was similar for
Malian and Burkinese butters, and different for other countries.
cis-Vaccenic acid content was significantly different between
Uganda and Mali. Linoleic acid content was similar for Senegal
and Burkina, and different for the other countries. Linolenic acid
content was similar for Ugandan and Senegalese butters, and for
Ghanaian and Burkinese butters, while Malian butters were
different from the others. Finally, only butters from Ghana and
Senegal displayed a similar relative arachidic acid content.

Spectral Data Matrix: Principal Component Analysis. The first
three principal components (PCs) extracted from a PCA carried
out on the 602 samples explained 79.2%, 13.2%, and 3.5% of
total inertia respectively. Only three samples presented H dis-
tances, calculated on 32 PCs, over 3: one from Mali (H = 3.1),
one fromUganda (H=3.2) and one from Senegal (H=3.5). In
terms of fat and moisture content these samples were in the
normal range, and no special information was registered for
them, therefore based on their relatively low H values they were
kept in the database for the rest of the study.

A scatter plot of the first two PCs (Figure 4) showed a sharp
discrimination between West and East African Shea nuts. Based
on previous results (4), the observed discriminationwas suspected
of being due to differences in butter FAprofiles betweenWest and
East African Shea nuts. This hypothesis was confirmed through
the significant correlations (Pearson test, 5% level) calculated
between PCs and fatty acids (e.g., correlation between PC1
and stearic acid r=-0.83; PC1 and oleic r=0.79). Additionally,
we found a significant correlation between PC2 and fat content
(r=-0.86).

The scatter plot of eigenvector coefficients (loadings) versus
wavelength confirmed the origin of the discrimination (Figure 5).
Indeed, the highest coefficients were associated with the wave-
length corresponding to absorption bands of chemical bonds
specific to fat, such as the C-H from -CH2 group second
overtone stretching band (1214 nm), the -CH2 stretch combina-
tion band (1396 nm), the C-H (-CH2 group) first overtone
stretching band (1724 nm) and the characteristic -C-H (-CH2

group) stretching and deformation combination band (2308
nm) (10, 26). The profiles for loadings 1 and 2 were similar for
major absorption bands, the absorption band due to H-OH
second overtone (1916 nm) being taken into account by PC2.
Assignment of the major Shea nut NIR absorption bands is
summarized inTable 3. Moreover, the loading profiles were close
to the pure butter spectrum, which accounts for a large share of
the Shea nut spectral fingerprint. This was illustrated by compar-
ing the Ugandan Shea nut spectrum and the corresponding
extracted butter spectrum (Figure 6).

NIRS Calibration.Of the 602 spectra, the 542 samples used for
calibration and the 60 randomly selected samples for validation
were representative of the variation, in terms of SD and range
(Table 4) for each constituent. Fat and stearic acid distributions
for validation and calibration sets are shown in Figure 7. These
histograms illustrate the distribution of validation samples with
respect to the variation of the population. One validation sample
had an extreme value (26.96%) for fat content (lower than the
lowest calibration sample whose fat content was 28.44%); keep-
ing this sample in the validation set allowed us to test our fat
model in extrapolation. Modified PLS regressions (mPLS) were
performed using the calibration set and reference laboratory data.
Constituents were then predicted for the validation set using the
mPLS models.

Figure 4. Scatter plot of the 602 sample scores for the first two principal components (95% confidence ellipses).
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Model prediction accuracy was evaluated through RPDp:
values below 1.4 corresponded to unusable calibration, RPDp

values between 1.4 and 1.7 corresponded to a calibration usable
for rough screening, and values higher than 4 indicated that the
calibration could be used for quality control analyses (10, 27).
Calibration statistics and validation statistics are reported in
Table 4.

Moisture Content. Calibration for MC gave both R2 and Rp
2

of 0.95. For this model, RPDp was 4.45 and SEP was 0.23%with
a regression slope of 0.96 between laboratory and NIR-predicted
values (Figure 8a). Compared to calibrations obtained in the
literature for MC (28), this model appeared less efficient. How-
ever, this was due to sample preparation (nuts were dried), which
led to dissymmetric distribution of MC values: 83% of samples
contained less than 4% moisture. In any event, based on model
performances, MC NIR calibration can be applied to Shea nuts
for routine analysis. To prevent lipid degradation due to hydro-
lysis of triacylglycerol, commercial nuts must have a moisture
content below 9% (29), thus our model was efficient enough for
its control.
Fat Content. The model developed for fat quantification was

efficient: R2 and Rp
2 were equal to 0.96 and 0.97, and RPDp to

5.61. The regression slope between laboratory andNIR-predicted
values was 1.02 (Figure 8b). The estimated SEP was 1.05%,
enabling Shea nut fat content determination with an accuracy
of(2.06%.Themodel obtainedwas in accordancewith results in
the literature related to high fat content products (30). Our
calibration was usable for quality control of Shea nut fat content
in producing countries for commercial purposes.

cis-Vaccenic Acid. The calibration developed for cis-vaccenic
acid was poor with R2 = 0.48. This result was confirmed by the
estimation of theRp

2 on the validation set (Rp
2=0.23). The RPDp

observed for the cis-vaccenic acid model was about 1.2, corre-
sponding to an unusable calibration. Thiswas probably due to the
low cis-vaccenic acid contents observed (<0.9%) which were
close to the NIRS detection limit.

Palmitic Acid. The palmitic acid calibration had a low Rp
2

(0.53) for the validation set compared to R2 (0.61) of the cali-
bration set. This was due to an overestimation of the R2 coeffi-
cient resulting from extreme values in the calibration set. RPDp

obtained with the model (1.3) also corresponded to an unusable
calibration. The lack of correlation between the NIR fingerprint
and chemical data resulted from the low variability of palmitic
acid content which ranged from 3.31% to 5.62% for 83.8% of
samples.

Linoleic Acid. For linoleic acid, the R2 value for calibration
(0.63) was similar toRp

2 (0.68). This reflected a relatively efficient
model for both calibration and prediction. With an RPDp equal
to 1.71, the calibration developed for linoleic acid could therefore
be used for rough screening.

Arachidic Acid. For arachidic acid, the model developed was
similar to the linoleic acid model withR2= 0.63,Rp

2= 0.57 and
RPDp = 1.50. To conclude, as for linoleic acid, this model could
only be applied for very rough screening.

Linolenic Acid. The calibration model for linolenic acid
seemed fairly good, as for arachidic and linoleic acids. However,
validation revealed the poor performance of the model, with a
very low Rp

2 (0.39) and RPDp (1.30). This result highlighted the
importance of using a validation set covering the whole range of
values. Indeed, the R2 observed for linolenic acid was artificially
high, due to a bimodal distribution of values for the calibration
samples.

Stearic and Oleic Acids. The R2 values for calibrations were
close to 1 for stearic acid (0.96) and oleic acid (0.98). High R2

coefficients correspond to a very good data fit. These results were
confirmed by estimating Rp

2 on the validation set (stearic acid

Table 3. Assignment of Major Shea Nut NIR Absorption Bands

wavelength (nm) bond type vibration mode structure

1160 C-H stretching 2nd overtone CH3
1172 C-H stretching 2nd overtone HCdCH

1214 C-H stretching 2nd overtone -CH2

1396 -CH2 stretching -CH2

1450 O-H stretching 1st overtone H2O

1724 C-H stretching 1st overtone -CH2

1916 O-H stretching and deformation

combination

H2O

2100-2200 CdC stretching and deformation

combination

HCdCH

cis dC-H and

CdC

stretching combination HCdCH

2308 C-H stretching and deformation

combination

-CH2

Figure 6. Spectra of Shea nut powder (Uganda) and corresponding
extracted butter.

Figure 5. The first two loadings as a function of wavelength.
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0.98 and oleic acid 0.98). The RPDp values obtained for stearic
and oleicmodels were 6.26 and 7.91 respectively. Stearic and oleic
acids displayed bimodal distributions due to eastern and western
butter specificities, however the fit was efficient for each sub-
population, resulting in an overall accurate calibration. SEP
values observed on the validation set for stearic and oleic acids
were 1.19% and 0.90% respectively. The regression slopes
between GC values and NIR-predicted values were 1.04 and
1.06 respectively (Figures 8c and 8d). Both models were set up
with a similar number of PLS terms (10 and 11), though the oleic
acid calibration performed better. Oleic acid contains a double
C-bond (CdC) with a specific signature between 2100 and 2200
nm (30). The slight difference between the stearic and oleicmodels
was therefore probably due to this specificity resulting in a higher
correlation between oleic acidGC values and NIR data. Further-
more, for regression coefficients, higher correlations were found
at 1160 nm and 1172 nm, corresponding to double bond-related
wavelengths (Table 3) and in the 2140-2180 nm region assigned
to the combination of cis dC-H and CdC stretching, -CH2

asymmetric stretching and Cd stretching of the -HCdCH-
structure (31).
Saturated vs Unsaturated Acids. Calibrations developed

for total saturated fatty acids and total unsaturated fatty acids
(mono- and polyunsaturated) led to similarly efficient models,

with a RPDp of 5.72 (Table 4). This performance was not
surprising due to the high quality of individual calibrations
obtained for oleic and stearic acids which represented 86%
of unsaturated FA and 87% of saturated FA acids in Shea
butter.

Industrial and Research Prospects. Obtaining a precise descrip-
tion of Shea nut quality for sustainable development, research
and industry is becoming ever more critical. In this study, we
proposed NIR models for accurate prediction of Shea nut stearic
and oleic acid composition, fat and water content. Transferring
these novel tools to producing countries will provide them with
the opportunity to control and promote the quality of their
production. In addition, for the food and cosmetics industries,
this application will enable early selection of products according
to their end use. Accurately predicting the saturated:unsaturated
FA ratio is relevant for Shea butter use as a cocoa butter
equivalent (CBE) in the chocolate industry.

In terms of research, understanding the environmental and
genetic basis of variation patterns in the fat composition of
Shea nuts is an important issue. Studies being developed (data
not published) reveal a specific genetic variation pattern for a
gene strongly involved in the variation of the relative percentages
of oleic and stearic acids, and by extension the saturated:un-
saturated fatty acid ratio (32, 33). To that end, our NIR models

Table 4. Descriptive Statistics for Calibration Subsets, Validation Subsets and NIR Equationsa

MC fat palmitic stearic oleic cis-vaccenic linoleic linolenic arachidic ratiob

Calibration N = 542

mean 4.46 49.68 4.24 38.25 48.44 0.40 7.15 0.30 1.20 0.79

range 6.12 31.22 5.73 25.32 23.58 0.82 8.47 0.63 1.37 0.76

SEL 0.1 0.79 0.19 0.98 0.66 0.09 0.34 0.12 0.05 0.02

SDcal 0.84 4.77 0.66 5.68 5.21 0.15 0.90 0.12 0.19 0.17

SEC 0.18 1.00 0.41 1.06 0.74 0.11 0.55 0.07 0.12 0.03

R2 0.95 0.96 0.61 0.96 0.98 0.48 0.63 0.66 0.63 0.97

SECV 0.20 1.08 0.46 1.14 0.81 0.11 0.62 0.08 0.13 0.04

RPD 4.22 4.43 1.43 4.97 6.47 1.32 1.46 1.54 1.53 4.25

Validation N = 60

mean 4.44 50.40 4.49 36.69 49.68 0.41 7.28 0.31 1.17 0.76

range 4.65 31.38 3.06 24.16 23.15 0.69 9.11 0.49 0.87 0.79

SDval 1.02 5.88 0.69 7.43 7.11 0.19 1.33 0.13 0.21 0.23

SEP 0.23 1.05 0.53 1.19 0.90 0.16 0.78 0.10 0.14 0.04

Rp
2 0.95 0.97 0.45 0.98 0.99 0.23 0.68 0.39 0.57 0.97

RPDp 4.45 5.61 1.30 6.26 7.91 1.19 1.71 1.30 1.50 5.72

aMC: moisture content. N: number of samples. SEL: standard error of laboratory. SD: standard deviation for calibration subset. SEC: standard error of calibration. R2:
coefficient of multiple determination. SECV: standard error of cross validation. RPD (ratio performance to deviation) = SDcal/SECV. SDval: standard deviation for validation subset.
SEP: standard error of prediction; Rp

2: coefficient of multiple determination for prediction. RPDp (ratio performance to deviation for prediction) = SDval/SEP.
bRatio saturated

to unsaturated fatty acids.

Figure 7. Distributions of fat content and stearic acid % for calibration and validation subsets.
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enable us to achieve an accurate, quick and cheap determination
of a large number of samples needed for quantitative genetics
studies.

In this paper, based on a large collection of samples, we
confirmed adifferentiation inSheanut fat composition correlated
to geographical origin. The performance of the calibrations
obtained indicated that Shea nut moisture and fat contents could
be determined with acceptable accuracy using NIR spectroscopy
methods. The good calibration performance for relative stearic
and oleic acid percentages indicated their suitability for fine
determination. NIR calibration enables fine characterization of
fat profiles in terms of saturated and unsaturated fatty acids. We
demonstrated that NIR allows rapid (less than one minute per
sample) nondestructive and reliable determination in one shot of
moisture, fat, stearic and oleic acid contents of Shea nuts. Thus
our models can be applied for high-throughput characterization
of Shea nut quality. Transferring this technology will enable a
Shea nut quality control and traceability survey. Moreover, our
NIR models make it possible to carry out further quantitative
genetics investigations.
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